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1. Introduction

The analysis of non-stationary noise and vibration signals on rotating machinery is commonly
performed through the use of specialized digital signal processing (DSP) techniques. DSP methods
developed primarily for rotating machinery analysis are called order tracking techniques. The
analysis of non-stationary conditions requires additional information, as compared to steady state
conditions, for accurate results to be obtained. This additional information is usually presented in
the form of a tachometer signal measured on a reference shaft of the machine.
An order is a time varying phasor that rotates with an instantaneous frequency related to the

rotational frequency of the reference shaft, as shown in Eq. (1). It can be seen that the rotating
phasor will contain a frequency that varies as the period of rotation, or r.p.m., varies:

X ðtÞ ¼ Aðk; tÞ sinð2piðk=pÞt þ fkÞ; ð1Þ

where Aðk; tÞ is the amplitude of order k as a function of time, fk is the phase angle of order k; p is
the period of primary order in seconds, t is time, and k is the order being tracked, where k ¼ 0
(DC offset) and ko0 (negative frequencies).
Multiple orders are normally present in a dataset acquired from an operating machine. These

orders may be described mathematically by a summation of time varying phasors.
Order functions can be generated by any rotating input on an operating machine and may vary

in amplitude and/or frequency as a function of time. This amplitude varying property causes
errors in any type of order tracking analysis. All order tracking techniques consider the amplitude
of an order to be semi-constant over the analysis period used to estimate the amplitude and phase
of the order. This assumption can cause considerable errors in the analysis.
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2. Order tracking theory

2.1. Fourier transform based order analysis

Fast Fourier transform (FFT) based order tracking is both the simplest to implement and the
most commonly used. This method is available in virtually all of the commercial order tracking
software.

2.1.1. Fourier transform based order analysis theory

The theory of the FFT is very well documented in many references and will not be presented
here in detail. Shannon’s sampling theorem is for the general use FFT and is not related in any
way to the behavior of the rotating machine. This leads to several limitations of FFT based order
tracking [1].
The properties of the sampling, kernels, and the type of data that the FFT is well suited to

analyze are shown graphically in Fig. 1(a). The kernels of the FFT are constant frequency,
constant amplitude sine and cosine functions for each analyzed frequency. This figure shows that
the kernel has the same shape as the constant frequency data that it was developed to analyze if
the data is sampled relative to time. Mathematically, a transform works well if the shape of the
kernel matches the characteristic of the data of interest. Clearly, the shape of the FFT kernel does
not match that of data with frequency content that varies as a function of time and is sampled
relative to time as shown in Fig. 1(b).

2.1.2. Fourier transform based order tracking limitations and errors

One limitation that all Fourier transform based techniques possess is based on the assumption
that the sinusoidal functions of interest are constant amplitude over the transform time. If the
amplitude is not constant over the analysis time the transform will estimate the average amplitude.
An example of the differences in the estimated amplitude of a varying amplitude sine wave with
different analysis blocksizes is shown in Table 1 for the sine wave presented in Fig. 2.
Table 1 was generated by using four different blocksizes, all centered about the center of the

block of data. It can be seen that the difference in the amplitude estimates varies from 3.8099 to
4.5476. All estimates were obtained using a Hanning window to minimize leakage.

2.2. Angle domain sampling based order tracking

The second most common order tracking method in use in commercial software and dynamic
signal analyzers are the digital resampling based order tracking methods. These methods are the
digital equivalent of the analog order tracking methods that use a tracking anti-alias filter and a
frequency ratio synthesizer as an external sample clock. These methods are commonly referred to
as computed order tracking methods.
The first published material on this type of order tracking method was by Potter et al. [2–8]

from Hewlett Packard in 1989. Hewlett Packard considers the exact implementation of the
technique to be proprietary and as such has not published many of the details. Recently many
other dynamic signal analyzer manufacturers have begun to offer a type of resampling based
order tracking. Again, these manufacturers consider their exact implementation to be proprietary.
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2.2.1. Digital resampling based order tracking theory
The resampling based order tracking methods acquire data with a uniform Dt: The uniformly

sampled time data is then digitally resampled to the angle domain through the use of an adaptive
resampling algorithm.

Table 1

Amplitude estimate vs. blocksize for time function shown in Fig. 2

Blocksize Amplitude estimate

512 4.5476

1024 4.4850

2048 4.2923

4096 3.8099
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Fig. 2. Varying amplitude sine wave.

Fig. 1. (a) Graphical representation of Fourier transform, its properties, and sampled constant frequency data. (b)

Varying frequency sine wave sampled with a constant Dt:
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The uniformly spaced angle data is processed using the Fourier transform to obtain amplitude
and phase estimates of the orders of interest. The significance of angle domain sampling is that
this data has the same properties as a stationary frequency sine wave sampled with uniform time
intervals. The adaptive resampling from the time domain to the angle domain transforms non-
stationary time domain data into stationary angle domain data that can be analyzed with
standard digital signal processing methods. The result of resampling a varying frequency sine
wave is shown in Fig. 3. This figure shows that the chirp function, shown in Fig. 1(b) sampled with
a uniform Dt; appears to be a sine wave after angle domain resampling. This function now
matches the shape of the Fourier transform kernel, which implies a more accurate analysis of the
signal is possible.
To perform a Fourier transform on the angle domain data, Shannon’s sampling equations must

be reformulated in terms of angle and order

Do ¼
1

R
¼

1

NnDy
; R ¼ NnDy;

Onyquist ¼ Omax ¼
Osample

2
; Osample ¼

1

Dy
; ð2Þ

where Do is the order spacing of the resulting order spectrum, R is the total number of revolutions
that are analyzed, N is the total number of time points over which the transform is performed, Dy
is the angular spacing of the resampled samples, Osample is the angular sample rate at which the
data is sampled, Onyquist is the Nyquist order and Omax is the maximum order that can be analyzed.
As shown in Eq. (2), there are analogous quantities for each of the time domain sampling

parameters in the angle domain. The order resolution is related to the number of revolutions that
the machine turns through over the transform period. It should also be noted that the minimum
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Fig. 3. Chirp function resampled to angle domain.
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sampling rate needed to avoid aliasing is two samples per cycle of the highest order of interest, the
same as that required with time domain data.
The kernels of the Fourier transform are also reformulated in terms of the uniform angular

intervals:

am ¼
1

N

XN

n¼1

xðnDyÞ cosð2pomnDyÞ; bm ¼
1

N

XN

n¼1

xðnDyÞ sinð2pomnDyÞ; ð3Þ

where om is the order which is being analyzed, mDo; am is the Fourier coefficient of the cosine term
for om; and bm is the Fourier coefficient of the sine term for om:
The result from this angle domain Fourier transform is that the orders fall on spectral lines,

regardless of the speed variations over which the transform is applied. Typically a DFT is
performed instead of an FFT. This allows the transform to be applied over the number of points
that corresponds to an integer number of revolutions of the machine’s rotation. This leads to a
leakage free order estimate for orders that fall on spectral lines. This also results in a constant
order resolution, this is beneficial because the integration time is shorter at higher r.p.m. values.
This property is desired since orders will change frequency more rapidly at higher r.p.m. values
and therefore are more likely to change amplitude more rapidly as well. Constant order resolution
also allows closer orders to be analyzed at low r.p.m. values where they are close together in
frequency.

2.2.2. Digital resampling based order tracking limitations and errors

Resampling based order tracking, while being more accurate than FFT based order tracking,
still has limitations and errors associated with it.
An obvious limitation with any FFT type analysis is the finite order resolution. This presents a

problem if there are orders present that do not fall on spectral lines. These orders are difficult to
analyze with an FFT approach.
The limitation of the FFT performed on non-stationary amplitude data is still present with the

angle domain Fourier transform. The resampling process does nothing to overcome this
limitation other than allow the transform to be applied over a shorter period of time at the higher
r.p.m. values where a shaft requires less time to rotate through the desired number of revolutions.
Resampling based order tracking only allows orders to be tracked relative to one rotating shaft

at a time. This restriction also implies that orders that cross one another cannot be analyzed
accurately. Orders which cross one another may be generated by two different rotating
components which are not rigidly coupled to one another. This may occur across a torque
converter in an automatic transmission or in a continuously variable transmission. To separate
the crossing orders, or orders that are not relative to the same shaft, requires the use of multiple
tachometer signals which is not possible with this method.

2.3. Kalman filter based order tracking

An order tracking method that overcomes many of the limitations of order resolution is the
Kalman filter based order tracking. The Kalman filter methods allow the extraction of the time
history of the order as well as the estimate of the amplitude and phase of an order. The Kalman
filter was first adapted to order tracking by Vold and Leuridan [9,10]. Since this original
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implementation, Vold has continued to develop more advanced filters with additional capabilities
[11–13].

2.3.1. Original Kalman order tracking filter theory
The Kalman filter approach to estimation requires that a priori information of some type be

known [14,15]. To use the Kalman filter to extract order information from data requires
information about the order to be extracted.
The a priori information used to formulate the structural equation of the Kalman filter is

the r.p.m. from the tachometer signal. The structural equation is an equation that describes the
mathematical characteristics of the order to be extracted. The structure equation used in the
original second order Kalman order tracking filter that can be used to mathematically describe a
sampled sine wave is

xðnDtÞ � 2 cosðoDtÞxððn � 1ÞDtÞ þ xððn � 2ÞDtÞ ¼ 0; ð4Þ

where xðnDtÞ is the nth discrete time sample, o is the instantaneous frequency of the sine wave.
Eq. (4) describes a sine wave whose frequency and amplitude is constant over three consecutive

time points. The frequency of an order is allowed to vary with time, which implies that the
frequency of the sine wave is not constant. The structure equation is re-written to account for this:

xðnDtÞ � 2 cosðoDtÞxððn � 1ÞDtÞ þ xððn � 2ÞDtÞ ¼ eðnÞ; ð5Þ

where eðnÞ is the non-homogeneity term.
The non-homogeneity term is used to describe the amplitude and frequency variations from a

perfect sine wave. Mathematically, if a sine wave is amplitude modulated there must be other
frequency components present in the data. These additional frequencies are sidebands which
allow the amplitude of the sine wave to change with time. If the amplitude is to change quickly,
then more frequency information must be allowed to pass through the filter and the non-
homogeneity term must be larger.
The second equation that the Kalman filter is based on is the data equation. The data equation

describes the relationship between the order, xðnÞ; and the measured data, yðnÞ: The measured
data contains not only the order of interest but all orders generated by the machine and other
random noise present in the data. This equation is written

yðnÞ ¼ xðnÞ þ ZðnÞ; ð6Þ

where ZðnÞ is the nuisance component.
The nuisance component, ZðnÞ; is the portion of the signal containing the non-tracked orders

and random noise. If the nuisance term is large it indicates that a significant portion of the
measured signal, yðnÞ; is attributable to non-tracked orders and random noise.
The structure and data equations are combined into a set of linear equations to solve for the

amplitudes of the order of interest. Normally, the least-squares formulation is formulated in a
matrix form to solve for all points of a time history simultaneously [9,16,17]. This formulation is
technically a Kalman smoothing algorithm, as opposed to a filtering algorithm, because it uses
time points both before and after the desired time point to obtain the order estimate [14,15].
A weighted solution to this problem is formed by ratioing the standard deviations of the

structure and data equations. This ratio is what is referred to as the Harmonic Confidence Factor

J.R. Blough / Journal of Sound and Vibration 262 (2003) 707–720712



(HCF) in commercial implementations of this filter. The value of this parameter is what
determines the tracking characteristics of the filter.
Choosing a relatively high value for the HCF weights the structure equation more heavily in

the solution process and results in a filter shape that is very narrow. This allows very little
sideband information to pass through the filter and hence only allows the amplitude to change
slowly. A relatively high HCF then gives a very sharp filter with very good frequency
discrimination.
Choosing a relatively low value for the HCF has the effect of weighting the data equation

more heavily in the solution process and results in a filter that does not possess as sharp a rolloff
and therefore is not as frequency discriminating as the high HCF filter. Using a low HCF allows
the amplitude of the filtered order to vary much more quickly than the high HCF filter. This
behavior may be necessary around lightly damped resonances or in fast speed sweeps where the
frequency and amplitude of the order must be allowed to vary quickly. The various filter
characteristics and how their tracking characteristics vary relative to the HCF are well
documented [9,16,17].

2.3.2. Vold–Kalman order tracking filter

Vold both simplified and extended the original Kalman order tracking filter into the Vold–
Kalman order tracking filter [11]. This extended filter can be formulated with different numbers of
poles to alter its bandpass characteristics. The filter may also be applied in either an iterative or
direct solution to separate the contributions of very close or crossing orders.
The Vold–Kalman form of the structure equation has several advantages over the original

second order formulation [11,16–18]. One key advantage of this form of the structure equation is
that the frequency term can be eliminated and therefore it becomes obvious that there is
absolutely no frequency or slew rate limitations. It is also possible to reformulate the structure
equation to gain computational efficiency in its solution [19,20].
An additional capability of the Vold–Kalman filter is the ability to reformulate the filter as a

higher order filter in order to have a broader passband region while improving the sideband
rejection. This filter has a flatter top relative to the single point peak which the first order filter
possesses. The penalty paid for these improved filter characteristics is computational complexity.
A higher order formulation requires the solution of a more heavily banded matrix as opposed to
the first order’s tri-diagonal matrix. For example, a second order formulation has a banded matrix
with five fully populated diagonals. The actual formulation of the higher order filters is considered
to be proprietary by Vold.
While the higher order filter formulations can possess much sharper passbands, they may not be

the filter of choice for very close orders because of their broader top. They are more forgiving if an
imperfect tachometer signal was measured. The higher order filters should be used if there are high
amplitude orders that are close to the tracked order but outside of its passband. The sharper filter
skirts will allow these other orders to be more effectively eliminated from the tracked order.
Probably, the most important characteristic which has been added to the order tracking

analysis capability by the Vold–Kalman filter is the ability to separate either very close or crossing
orders through either an iterative or a direct solution. The formulation and solution of these filters
are considered to be proprietary by Vold. This ability is commercially available in multiple
software packages.
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2.3.3. Kalman/Vold–Kalman applications and realizations

The formulations and discussions of both the original and the Vold–Kalman filters are centered
about a weighting factor that is constant as a function of time. This is not a requirement of either
filter’s formulation. In fact, all commercial implementations of either filter allow the weighting
factor to vary as a function of time or r.p.m. If the weighting factor is varied as a function of
r.p.m., a pseudo-constant order bandwidth filter may be obtained. Another strategy to vary the
weighting factor of the filter is based on instants of known transient activity in the data. Examples
of this transient activity are gear shifts or clutch engagements. At these types of events it is
assumed that the amplitude of a tracked order may change very quickly, thus the weighting factor
is reduced in these regions to allow more sideband energy to pass through the filter and hence the
order amplitude to change quicker.
The best frequency discrimination that can be expected from the Kalman filters is the same as

that of the Fourier transform. Frequencies closer together than the inverse of the total length of
time of the datablock cannot be effectively separated, as defined by Rayleigh’s criteria.
While the Kalman order tracking methods have many advantages over the traditional order

tracking methods, including better dynamic range and the time domain order extraction, they do
have some disadvantages. Computational complexity is one disadvantage of the adaptive filters.
The largest disadvantage, however, is the experience required to get accurate results. The
experience is required in choosing the appropriate weighting factor to extract the order with a
minimal bandwidth while accurately tracking the amplitude profile. The weighting factor that is
necessary for an accurate extraction is a function of the other orders present in the data, the sweep
rate, and the properties of excited resonances. All of these items, which can vary from channel to
channel, change the rate at which the amplitude of an order changes and therefore affect the width
of the filter necessary for an accurate extraction.

2.3.4. Iterative time varying HCF Vold–Kalman order tracking filter

Realizing the limitations of the commercially available Kalman/Vold–Kalman order tracking
filter implementations, a new filter implementation was explored [21]. The two largest shortfalls in
the current Kalman implementations are the determination of the HCF and how to determine if
an order has been accurately filtered.
Two new approaches were developed to overcome these limitations, one method more

automated than the other. Both of these methods made an attempt to vary the HCF based on an
initial guess at an HCF value. After applying the filter with this constant HCF value the amplitude
profile of the filtered order was used to reshape the HCF as a function of time and the data re-
filtered. Where large amplitude changes occurred quickly, the HCF was reduced, where there
were essentially no amplitude changes over a period of time the HCF was increased. This process
was repeated until an amplitude envelope for the order of interest was converged upon. The
difference between the two methods developed was that in one case the results were iterated upon
over the entire time history while in the other case the time history was divided into pieces and the
iterations performed.
Both implementations showed that this is a feasible way to apply the Vold–Kalman filter. More

development and evaluation of these methods is necessary as they are still in the research stages of
implementation. Further improvements in computational efficiency are also required as in most
cases it requires 4–6 iterations for the filter’s response to stabilize.
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2.4. Time variant discrete Fourier transform order tracking

2.4.1. Time variant discrete Fourier transform order tracking theory

The time variant discrete Fourier transform (TVDFT) method of order tracking is a special
case of the chirp-z transform. The chirp-z transform is defined as a type of Fourier transform with
a kernel whose frequency and damping vary as a function of time [22]. The TVDFT is defined as a
discrete Fourier transform whose kernel varies as a function of time defined by the r.p.m. of the
machine; the damping does not vary as a function of time. The TVDFT has many of the
advantages of the resampling based order tracking methods, while reducing the computational
load of the calculations considerably [23,24].
The TVDFT method is based on constant Dt sampled data. Whether it is desired to analyze

data with a constant frequency or constant order bandwidth determines whether the sampling
theorem used is based on constant Dt data or constant Dy data.
The TVDFT is based on the transform shown in Eq. (7). It should be noted that the kernel of

this transform appears as a portion of the structure equation used in the Vold–Kalman order
tracking filter [11]. This kernel is a cosine or sine function of unity amplitude with an
instantaneous frequency matching that of the tracked order at each instant in time. This kernel
may also be formulated in a complex exponential format similar to the corresponding Fourier
transform:

an ¼
1

N

XN

n¼1

xðnDtÞ cos 2p
Z nDt

0

ðonDt r:p:m:=60Þ dt

� �
;

bn ¼
1

N

XN

n¼1

xðnDtÞ sin 2p
Z nDt

0

ðonDt r:p:m:=60Þ dt

� �
; ð7Þ

where on is the order which is being analyzed, an is the Fourier coefficient of the cosine term for on;
bn is the Fourier coefficient of the sine term for on; and r.p.m. is the instantaneous r.p.m. of the
machine.
This transform is best suited to estimate an order with a constant order bandwidth. A constant

order bandwidth estimate may be obtained by performing the transform over the number of time
points required to achieve the desired order resolution, as defined by Eq. (2). This implies that as
the r.p.m. increases, the transform will be applied over a shorter time, giving a wider Df equivalent
to a constant order bandwidth. This behavior was also exhibited by the resampling methods and
was determined to be advantageous for order tracking.
Since the frequency of the kernel of this transform matches the frequency of the order of

interest at each instant in time, there is no leakage due to the order not falling on a spectral line.
There will, however, be leakage effects from other orders that are present in the data. These orders
can ‘‘leak’’ into the frequency band of analysis around the order. Typically used windows for
conventional FFT analysis are also used with this transform. Since all windows have a frequency
resolution/amplitude estimate tradeoff, the window chosen can have a significant effect on the
results. Which window to use depends on the order content of the data and the aspects of the
order estimate the user feels are most important.
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The TVDFT order tracking method presented here is a very practical order tracking method
which can be implemented in a very efficient manner on a computer. This method contains many
of the advantages of the resampling based algorithms without much of the computational load
and complexity. Computational efficiency is gained for large numbers of channels by computing
the transform kernel once, storing it, then applying it to each channel. Any window used in the
analysis should be applied to this pre-computed kernel, since the window only has to be applied
once if it is applied to the kernel instead of once for each channel. This method provides better
order estimates than the FFT based methods.

2.4.2. Orthogonality compensation matrix theory
To enhance the capabilities of the TVDFT for tracking orders and to reduce the errors due to

non-orthogonality of the kernels, an orthogonality compensation matrix (OCM) may be applied.
The application of the OCM allows faster sweep rates to be analyzed, as well as closely spaced and
crossing orders to be analyzed more accurately. This OCM is applied as a post-processing of the
order estimates from the TVDFT analysis.
To apply the OCM, all orders of interest are first tracked using the TVDFT with either a

constant frequency or constant order bandwidth. This tracking should be done intelligently, as the
quality of the compensation is related to the quality of the original order estimates. This implies
that the user may want to apply a Hanning window to increase out of band rejection. The
bandwidth used may be somewhat wider than is minimally necessary to separate closely spaced
orders. This relaxation of the bandwidth allows fewer revolutions to be analyzed at a time if
desired, which allows faster sweep rates to be analyzed.
The application of the OCM is a linear equations formulation,

e11 e12 e13 ? e1m

e21 e22 e23

e31 e32 e33 ^

^ &

em1 ? emm

2
6666664

3
7777775

o1

o2

o3

^

om

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

*o1

*o2

*o3

^

*om

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð8Þ

where eij is the cross orthogonality contribution of order i in the estimate of order j; oi is the
compensated value of order i; and *oi is the estimated value of order i obtained using the TVDFT.
The cross orthogonality terms, eij; are calculated by applying the kernel of order i to the kernel

of order j;

eij ¼
1

N

XN

n¼1

exp 2pi
Z nDt

0

ðoiDt r:p:m:=60Þ dt

� �
� Window

� �

� exp 2pi
Z nDt

0

ðojDt r:p:m:=60Þ dt

� �
: ð9Þ

The window used in the original order estimate is applied to order i to compensate for any
correction factor that may need to be applied to scale the data correctly. It also includes the effects
of the shape of the window in the compensation. Each term in the matrix represents the amount
that the orders’ kernels interact with one another in the transform estimation. If the orders
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included in the calculation of the OCM are orthogonal, the off diagonal terms of this matrix will
be zero, as is the case for the standard Fourier transform kernels. Since the effects of any orders
not included in this calculation are not compensated, it is recommended that all significant orders
be included in the compensation calculation.
Very closely coupled orders are normally very difficult to separate using standard FFT or

resampling techniques, as well as the TVDFT without compensation, because the orders may beat
with one another. However, with compensation the TVDFT can separate the contributions of the
orders effectively. Initially, the orders should be tracked with a bandwidth that is at its largest,
approximately equal to the spacing of the closely coupled orders. If the orders are tracked with
this bandwidth using a Hanning window, the order estimates will contain beating of the two
orders. This beating effect can be removed by applying OCM.
Crossing orders pose a similar problem to that of closely spaced orders. Oftentimes, if two

orders cross one another, the order estimates are incorrect at the crossing r.p.m. due to the
interaction of the orders. Tracking the orders and then applying the OCM allows the separation
of the contributions from each order.

2.5. Other order tracking methods

Several other order tracking methods have been developed that are not currently available in
widespread commercial application packages. These include methods based on the Prony Residue
Estimation process, the Maximum Likelihood process, as well as other methods based on
conventional digital filtering methods.
The Prony Residue Estimation process, more commonly known as a Complex Exponential

Method from Modal Analysis parameter estimation, has several disadvantages over the methods
discussed above. The largest two disadvantages that the method possesses are its computational
complexity and the requirement that a model order of the data be known. The determination of
the model order, or number of orders and resonances in the data, is not trivial because it is
typically a function of r.p.m. and which resonances are excited at each instant in time.
The other methods based on conventional digital filtering methods all appear inferior to the

Kalman/Vold–Kalman filtering methods because of their passband shapes. These filtering
methods also tend to be computationally demanding, though not as demanding as the Kalman/
Vold–Kalman implementations.

3. Order tracking method summary

To summarize the various problems of the order tracking methods presented, it is required that
the two primary difficulties in tracking orders be understood. As discussed above, the first
difficulty that is encountered when attempting to track orders from rotating machinery is that the
frequency of the components of interest, or orders, change as a function of time. Assuming that an
accurate tachometer signal has been measured, this limitation can be overcome by most of the
order tracking methods as they explicitly use r.p.m. in their theoretical formulations.
The more difficult problem to overcome is the fact that the amplitude of each order varies as a

function of time/r.p.m. based on both the forcing function supplying energy to the system of
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interest, changing its amplitude, as in an unbalance, and due to resonances that get excited. The
error associated with this problem is two-fold. One problem being that the peak amplitude that an
order may have will always be underestimated by the order tracking methods. This is because all
of the methods assume the amplitude of the order to be constant, or very slowly varying, over at
least a short period of time. Each of the different order tracking methods responds to this error
differently. No order tracking method has been developed to this date that can effectively handle
this problem in an automated fashion.
The other facet of this amplitude variation is the fact that for an amplitude to change there

must be other frequency content present. No current order tracking method has the ability to
predict when or to what level this frequency content is present. For instance, when an order
excites a resonance the other frequency content present will be the frequency of the resonance.
This energy will be present until the order’s frequency has moved far enough away from the
resonance so as not to excite it anymore and the energy associated with the impulse response of
the resonance has decayed down to a level in the noise floor of the data.

4. Future of order tracking analysis

Current and future demands of order tracking analysis will require DSP methods to continue to
become more sophisticated and simultaneously more computationally efficient. For example,
while frequency domain transfer path analysis, or conventional TPA, has been in use for several
years, it has required that the latest computers be employed to perform the necessary calculations
in a minimum amount of time. The major computations this analysis requires are a matrix inverse
at each frequency line for each operating condition.
Recently a major software developer has introduced a type of analysis that is referred to as time

domain transfer path analysis. This time domain approach requires the same matrix inverses
required for conventional TPA to be computed as well as all major orders filtered from the
operating data and subsequently a two dimensional surface to be fit to the background noise. This
procedure of filtering and surface fitting is required for each channel in the analysis. This tool is
used more as a sound quality application than a force estimation tool. New time histories are
synthesized for each channel after the operating forces are estimated and altered. These time
histories can then be played back by the user to assess the effectiveness of changing hardware on
the sound quality of a machine. The requirement that new order tracking analysis methods have
in this type of analysis is that they must be computationally efficient filtering algorithms that
completely remove the orders of interest. If there exist close or crossing orders in the data these
must also be handled correctly.
As the computational complexity of the NVH analysis methods and particularly order tracking

and adaptive filtering continue to increase it would be very beneficial to take advantage of the
multiple processors available in computers. This requires that either new methods be developed
that can explicitly be solved with parallel processes or that current methods must be adapted and
re-written.
As more companies are forced to work on reducing the noise and/or vibrations of their

particular products there will be personnel involved who do not have a formal training in NVH.
Software packages must be designed so that it is not overly difficult for non-NVH personnel to
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learn to use them and to perform many of the more basic types of analysis. For instance the
current Kalman/Vold–Kalman implementations are not appropriate for non-experienced
engineers. Research must be performed to try to ease the learning curve on these implementations.
Several major software developers are beginning to develop and market products to fill this void
in the marketplace.

5. Conclusions

Theory and implementation of commonly available order tracking methods was presented. The
two major sources of error in these analysis methods were discussed. These errors are due to the
frequency changing as a function of time and the amplitude varying with respect to time. From
the discussion above it is evident that a new order tracking method that was both easy to use and
could accurately handle these two errors would be welcome in the NVH analysis community.
Demands placed on current order tracking analysis methods include ease of use and

computational efficiency. With the common availability of multi-processor computers and the
computational complexity of current order tracking methods it becomes obvious that an order
tracking method should be developed or implemented in a manner that it takes advantage of the
specific processing advantages of parallel processors.
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